

Ingenieurbüro für Echtzeitprogrammierung

The extraordinary increasing of software costs especially in
realtime applications demands the transition from outdated as-
sembler programming to a higher level structured programming
language. PEARL is the only application orientated higher realtime
programming language world-wide. Independent problems can be
programmed as independent processes (tasks) and executed in
parallel – a substantial improvement within the field of control en-
gineering.

PEARL was born in the 1970's. A goal of the development pro-
moted by the Geman Ministry of Research and Technology was
the agreement on a language, which combines the most important
elements of the common high-level languages with a concise con-
cept of realtime and tasking. UH-PEARL is an implementation of
this language for microprocessor systems, the development start-
ed in the beginning of the 1980's at the University of Hanover un-
der the leadership of Prof. Dr. Ing. W. Gerth.

PEARL is an easy-to-learn programming language suited in par-
ticular to solve realtime-oriented problems. It is, to differentiate
from e.g. process FORTRAN, a monolithic language that directly
integrates process I/O and time-oriented task scheduling. Thus, a
high measure of portability is given.

PEARL is a block oriented, structured language. It is universally
suitable also to solve complex, algorithmic problems. Apart from all
common programming language elements, PEARL integrates in-
terrupt handling and synchronization objects.

A well formulated concept of multitasking, the support of all usual
algorithmic control structures as well as concise realtime control
statements are the special features of PEARL. During the lan-
guage design, special attention was paid to support the writing of
programs, that are easy to read and, therefore, easy to maintain,
without restricting the developer or detracting him from his problem
domain. Differently than e.g. Ada, PEARL is orientated towards
the applications engineer and gives an easy start without a steep
learning curve.

PEARL

Why PEARL

A modern
Concept

Easy to learn

Universally
applicable

Language
characteristics

Process and

Experiment

Automation

Realtime

Language

Programmieren von

Echtzeit-

Anwendungen

Relativ

Leicht

2 Pearl.doc

The modular structure of PEARL programs lays ground for safe
and efficient program development and easy maintenance within
larger projects.

A Module is a self contained compilation unit, but not necessarily a
self contained execution unit. The connection between modules is
made by global declarations and the corresponding specification of
global symbols. Inter-module relations can be satisfied either by an
additional linker or by load-time linkage.

M
o
d
u
l
e

n

...

M

o
d
u
l
e

2

Module 1

Declarations

Specifications

Global
Data

Local Data

Global functions

Export

Import

Export

Import

Local Data declarations

Local function declarations

Tasks

One PEARL-Module is separated in two parts, each of which may
be omitted. A module starts with a SYSTEM-part, defining the sys-
tem resources used in a system dependant manner. This part con-
tains no code.

The following PROBLEM-part is system independant and may use
only system services defined in either its own or another module's
SYSTEM-part.

MODULE name;

 SYSTEM;

 hardware dependancies

 PROBLEM;

 Declarations

 Procedures
 Tasks

MODEND;

Modularity

Portability

 Pearl.doc 3

The breakdown of a module into hierarchical blocks with local data
allows for a program structure that mirrors the structure of the
problem. Quasi parallel processing of tasks serve the ease of sep-
arating a problem in independant and simpler pieces of code. Pro-
cedures, which are reentrant and allow for recursion, provide for
the hassle-free realisation of problem specific code libraries.

PEARL supports all flow control structures common to modern
programming languages:

Apart from the regular simple data types FIXED, FLOAT and
CHAR, also common to other languages, PEARL provides the
aditional data types CLOCK (time), DURATION (length of time),
SEMA (synchronisation variable) and BIT (bit string) to allow for
strong typing in the problem domain. New data types can be de-
fined by problem-specific combination of elements of different
basic data types into groups (STRUCT) and by own type declara-
tions (TYPE).

PEARL is standardized since 1981 in DIN 66,253, part 1, Basic
PEARL, and since 1982 in DIN 66253, part 2, Full PEARL. PEARL
is already used in over 200 large and many hundred small pro-
jects.

In 1998, with the standardization of PEARL-90 in DIN 66253-2,
with caution the concept of the language was adapted to current
requirements. The current advancement of PEARL tries to agree
upon object-oriented programming procedures in combination with
the safety and efficiency requirements of realtime programming.

Block structure

Control
structures

Data types

Standardization

IF condition THEN

...

ELSE

...

FIN;

CASE Variable

 ALT / 1  /

 ...

 ALT / 2 /

 ...

OUT others

 ...

FIN;

FOR

counter

 FROM start

 BY step

 TO end

WHILE condition

REPEAT;

 loop body

END;

IEP GmbH  Am Pferdemarkt 9c  D-30853 Langenhagen  Tel.: +49 (511) 70832-0  Fax: +49 (511) 70832-99  E-Mail: info@iep.de

Web: http://www.iep.de Pearl.doc, 22.11.2017

The simple time scheduling of program flow

as well as the integrated interrupt scheduling

 WHEN fire ACTIVATE douse;

to schedule task douse to execute when the interrupt fire is trig-
gered allow for comprehensive self-documenting instructions.

In PEARL, input/output statements use so-called DATIONS. Sys-
tem-specific properties of dations are declared in a module's
SYSTEM part; in the PROBLEM part, these dations are used in a
portable manner. So, I/O of process values, e.g.

 SEND Off TO engine;

 TAKE is_engaged FROM clutch_switch;

and file-oriented, alphanumeric I/O

 PUT temperature TO log_file;

 GET target_height FROM console;

can be ported easily to different device configurations.

The PEARL compiler can generate ROM-able code and supports
targets without mass storage. At the start of the operating system,
during the phase of self-configuration, programs in ROM are rec-
ognized, their RAM-Areas get initialised and their code ist execut-
ed directly out of the ROM.

IEP supports the deployment of UH-PEARL on all computers un-
der the operating system RTOS-UH, based on e.g.

 the MC68xxx-family (MC68000 –MC68060, MC683xxx)

 the PowerPC family (MPC60x, MPC750, MPC5xx, MPC8xx,...)

The capabilities of these systems cover small embedded controls
as well as high-powered multiprocessor-systems based on e.g.
commercial off-the-shelf VMEbus-boards.

The UH-PEARL compiler is available either generic or as cross-
compiler, runnable under all versions of the Microsoft Windows
operating system since Windows '95.

Realtime
statements

I/O statements

ROM code

Availability

AFTER 10 SEC

ALL 4 SEC

UNTIL 17:00:00

ACTIVATE control PRIO 6;

Scheduling the cyclic exe-
cution of the task control
in a given time-frame

